VIVEKANANDA GOVERNMENT DEGREE COLLEGE, VIDYANAGAR, HYDERABAD

(Affiliated to Osmania University)

Accredited by NAAC with "B" Grade ISO 9001:2015

Physical Sciences

Programme Outcomes Programme Specific Outcomes Course Outcomes

Department of Mathematics Department of Physics Department of Chemistry Department of Statistics Department of Statistics Department of Computer Science

DEPARTMENT OF PHYSICAL SCIENCES PROGRAMME OUTCOMES AND PROGRAMME SPECIFIC OUTCOMES

PROGRAMME	PROGRAMME OUTCOMES(PO)
B.Sc. Physical Sciences	PO1: Capable of analysing and solving problems using reasoning skills based on concepts of Physics.
Sciences	PO2: Know and demonstrate understanding of the concepts from different branches of Mathematics
	PO3: Develop the knowledge, skills and attitudes necessary to pursue further studies in Mathematics and research in Mathematics.
	PO4: Understand the diverse applications of various fields of basic science and carry the knowledge and applications of basic sciences to community
	PO5 : Students will be able to understand the fundamental theories, concepts and applications in four basic areas of research in chemistry (Analytical, Inorganic, Physical & Organic). Develop the ability to explore new areas of research in Chemistry and allied field of Life sciences.
	PO6: To provide comprehensive understanding of programming concepts and to understand software development as a part of Computer Science
	PO6: Demonstrate proficiency in problem-solving techniques using the computer
	PO7: Ability to analyse data by appropriately fitting, assessing, and interpreting a variety of statistical models
	PO8: Ability to manipulate data, implement statistical methods, document, and debug code in one or more profession statistical software programs
	PO9: Students will demonstrate proficiency with statistical analysis of data. Students will develop the ability to build and assess data-based models. Students will execute statistical analyses with professional statistical software. Students will demonstrate skill in data management
B.Sc. (Mathematical Sciences)	PO1: Various techniques to solve differential equations.PO2: How to use vector calculus in various physics
	problems.

	PO3: Relative motion. Inertial and non-inertial reference	
	frames.	
	PO4: Recognize the importance and value of mathematical and statistical thinking, training and approach to problem solving, on a diverse variety of disciplines;	
	PO5: Ability to appreciate the benefits of experiential learning by inculcating good work habits, time management and self-discipline.	
PROGRAMME	PO6: Ability to apply critical thinking, decision making, and reasoning skills in the process of quality education PROGRAMME SPECIFIC OUTCOMES(PSO)	
B.Sc. (MPC)	PSO1: Know and integrate the knowledge of Maths, Physics and chemistry to succeed in graduate school.	
	PSO2: Develop the knowledge, skills and attitudes necessary to pursue further studies in Mathematics, Physics and Chemistry	
	PSO3: Understand the concepts from different branches of Mathematics (Calculus, Solid Geometrics, Abstract algebra, Linear Algebra, Fluid Mechanics, Number theory, Integral Transformations) and use appropriate mathematical concepts and skills to solve problems in real life.	
	PSO4: Demonstrate an understanding of principles and theories of Physics such as Newtonian mechanics, Thermodynamics, Electromagnetism, optics Special and general theories of relativity, quantum mechanics, atomic Physics, Molecular Physics, nuclear and elementary particle physics, solid state physics and renewable energy management and acquire laboratory skills to analyse the measurements to draw valid conclusions.	
	PSO 5: Acquire core competency in the subject Chemistry, and in allied subject areas. Understands the importance of the Periodic Table of the Elements, chemical bonding, and different states of matter, Organic and Inorganic compounds and their role in organizing chemical information and acquire laboratory skills, to Interpret and analyse quantitative data.	

B.Sc.	PSO 1: Various techniques to solve differential equations		
(MPS)	PSO 2: How to use vector calculus in various physics problems.		
	 PSO3: Relative motion. Inertial and non-inertial reference frames. PSO4: Recognize the importance and value of mathematical and statistical thinking, training and approach to problem solving, on a diverse variety of disciplines; 		
	PSO5 : To inculcate knowledge on demonstrate understanding of basic concepts of probability and statistics embedded in their course.		
	PROGRAMME SPECIFIC OUTCOMES(PSO)		
B.Sc. (MPCS)	PSO 1 : The M.P.CS programme provides students with an in- depth education in conceptual foundations of Physics and Computer Science with knowledge of hardware and fundamentals of software.		
	PSO 2: It allows them to explore the connections between Physics and Computer Science.		
	PSO 3: Combined with a strong education in Mathematics, it prepares students to be leaders in Electronics and Computer applications to other disciplines.		
	PSO 4: Serve as the Programmers or the Software Engineers with the sound knowledge of practical and theoretical concepts for developing software.		
	PSO 5 : Serve as the Computer Engineers with enhanced knowledge of computers and its building blocks.		
	PSO6 : Work as the Hardware Designers/Engineers with the knowledge of Networking Concepts.		

DEPARTMENT OF MATHEMATICS

S.N o.	Course Code	Course Title	Course Outcomes (CO)
1.	BS104	Paper I Differential Calculus	On completion of this course, the students will be able to:
			CO1: By the time students completes the course they realize wide ranging Applications of the subject.CO2: Successive differentiation.
			CO3: Expansions of Functions- Mean value theoremsCO4: Partial differentiation - Homogeneous
			functions CO5: Indeterminate forms - Curvature and Evolutes
			 CO6: Maxima and Minima of functions of two variables. CO7: Lagrange's Method of multipliers – Asymptotes- Envelopes.
2.	BS204	Paper II Differential Equations	After learning the course, the students will be equipped with the various tools to solve few types differential equations that arise in several branches of science. C01: The main aim of this course is to introduce the students to the techniques of solving differential equations C02: Differential Equations of first order and first degree: C03: Exact differential equations C04: Differential Equations Reducible to Linear Form. C05: Higher order linear differential equations: Solution of Homogeneous linear differential equations with constant coefficients C06: Method of undetermined coefficients. C07: Linear differential equations with non- constant coefficients –The Cauchy - Euler Equation. C08: Formation and solution- Equations easily integrable – Linear equations of first order.

3.	BS 304	Danar III	After the completion of the
3.	BS 304	Paper – III	course students will be in a
		Real Analysis	position to appreciate beauty
			and applicability of the course.
			CO1: Limits of Sequences- A Discussion
			about Proofs
			CO2: Limit Theorems for Sequences.
			CO3: Monotone Sequences and Cauchy
			Sequences -Subsequence's.
			CO4: Alternating Series and Integral
			Tests.
			C05: Continuous Functions
			CO6: Properties of Continuous Functions
			CO7: Basic Properties of the Derivative - The
			Mean Value Theorem
			CO8: Fundamental Theorem of Calculus.
4.	BS 401	Paper IV	On successful completion of the
		Algebra	course students will be able to
			recognize algebraic structures
			that arise in matrix algebra,
			linear algebra and will be able to
			apply the skills learnt in
			understanding various such subjects.
			Subjects.
			CO1: Definition and Examples of Groups
			CO2: Elementary Properties of Groups
			CO3: Terminology and Notation -
			Subgroup Tests – Examples of
			Subgroups
			CO4: Properties of Cyclic Groups -
			Classification of Subgroups Cyclic Groups.
			CO5: Definition and Notation -Cycle
			Notation-Properties of Permutations
			CO6: Properties of Isomorphisms -
			Automorphisms-Cosets and Lagrange's
			Theorem
			CO7: Normal Subgroups-Factor Groups
			CO8: Definition and Examples – Fields
			Characteristics of a Ring.
5.	BS 501	Paper V	After completion this course students
		Linear Algebra	appreciate its interdisciplinary nature.
			C01: Vector Spaces and Subspaces
			CO2: Null Spaces, Column Spaces, and
			Linear Transformations.
1			Linear Transformations.

			CO2. Linearly Indonandant Sata Dagas
			CO3: Linearly Independent Sets; Bases -
			Coordinate Systems –The Dimension of a
			Vector Space.
			CO4: Rank-Change of Basis –
			Eigen values and Eigenvectors
			CO5: The Characteristic Equation
			CO6: Diagonalization -Eigenvectors and
			Linear Transformations
			C07: Complex Eigen values -
			Applications to Differential Equations.
			CO8: Inner Product, Length, and
			OrthogonalityOrthogonal Sets -
			Orthogonal Projections -
6. I	BS:601/A	DSE-1F/A	Students realize the importance of the subject
		Numerical	in solving some Problems of algebra and
		Analysis	calculus.
			CO1: Errors in Numerical Calculations-
			Solutions of Equations in One Variable:
			CO2: solution of Systems of Nonlinear
			5
			Equations.
			CO3: Interpolation - Finite Differences -
			Differences of Polynomials –Newton's formula
			for Interpolation -
			CO4: Divided Differences -Newton's General
			Interpolation formula- Inverse Interpolation.
			CO5: Least Square Curve Fitting: Fitting a
			Straight Line
			CO6: Numerical Differentiation and
			Integration:
			CO7: Numerical Solutions of Ordinary
			Differential Equations:
			CO8: Euler's Methods - Runge Kutta Methods.
7. E	BS:601/C	DSE - 1F/C	Students understand the beautiful interplay
		Analytical	between algebra and geometry.
		Solid	CO1: Definition-The Sphere Through Four
		Geometry	Given Points
		Geometry	
			CO2: Equation of a Tangent Plane-Angle of
			Intersection of Two Spheres
			CO3: Definition-Condition that the General
			Equation of second degree Represents a Cone-
			Cone and a Plane through its Vertex CO4 -Intersection of a Line with a Cone.
			CO5: The Right Circular Cone-The Cylinder
			CO6: The Right Circular Cylinder
			CO7: General Equation of the Second Degree-
			Intersection of Line with a Conicoid - Plane of
			contact-Enveloping Cone and Cylinder.
			CO8: Plane of contact-Enveloping Cone and
			Cylinder
1 1			

8.	BS:606	DSE-1F/B	Students realize the way vector calculus is
0.	D 3:000	Vector	Students realize the way vector calculus is
		Calculus	used to addresses some of the problems of physics.
		Calculus	CO1: Work done against a Force-Evaluation of
			Line Integrals
			CO2: Integrals Conservative Vector Fields-
			Surface Integrals
			CO3: Evaluation of Volume integrals
			Gradient, Divergence and Curl
			CO4 : Partial differentiation and Taylor series
			C05: Gradient of a scalar field-Gradients
			CO6 Conservative fields
			CO7: Divergence of a vector field - Curl of a
			vector field Relation between curl and rotation-
			CO8: Relation between curl and rotation-
9.	BS:	SEC – 1	On completion of this course the students will
	301	Theory of	be able to;
		Equations	CO1: By using the concepts the students
			are expected to solve Some of the
			polynomial equations.
			CO2: Graphic representation of a
			polynomial.
			CO3: Existence of a root in the general
			equation.
			CO4: Descartes' rule of signs for positive
			roots- Descartes' rule of signs for negative
			roots.
			CO5: Relations between the roots and coefficients
			CO6: The cube roots of unity Symmetric
			functions of the roots.
10	BS:	SEC-2	On the completion of this course, the students
	401	Transportation	will be able to;
		and Game	C01 : Students come to know about the
		theory	applications of Operations Research.
			CO2: A Streamlined Simplex Method for the
			Transportation Problem.
			CO3: The Assignment Problem.
			CO4: The Formulation of Two-Person, Zero-
			Sum Games-Graphical Solution Procedure
			CO5: Solving by Linear Programming -
			Extensions.
1	BS:40	SEC-2D	Student uses the knowledge acquired solving
	1	Number	some divisor problems.
		Theory	
			CO1 : The Goldbach conjecture - Basic
			properties of congruence
			CO2: Binary and Decimal Representation - of
			integers

			 CO3: Number Theoretic Functions; The Sum and Number of divisors. CO4: Euler's generalization of Fermat's Theorem CO5: Euler's Phi function- Euler's theorem Some Properties
	BS:501	SEC-3 Mathematical Modelling	On the completion of this course, the students will be able to CO1 : Student realizes some problems can be modelled by using Differential equations. CO2 : Linear Models-Nonlinear Models- Modeling with Systems of First-Order DEs. CO3 : Initial-Value Problems. CO4 : Driven Motion-Series Circuit Analogue. CO5 : Boundary-Value Problems.
12	BS: 601	SEC-4 Game Theory	On the completion of this course, the students will be able to; CO1 : Come to know about nice applications of Operations Research CO2 A Gentle Introduction - Definitions and Basic Properties - Isomorphism. CO3 : Paths and Circuits. CO4 : Eulerian Circuits - Hamiltonian Cycles. CO5 : The Adjacency Matrix Shortest Path Algorithms.
1:	BS 502	GE-1 Lattice Theory	 Students apply their knowledge to solve some problems on switching circuits. C01: Properties and Examples of Lattices. C02: Minimal Forms of Boolean Polynomials. C03: Applications of Lattices. C04: Applications of Switching Circuits – C05: More Applications of Boolean Algebras.
14	BS 602	GE-2 Elements of Number Theory	 Students apply their knowledge problems on check digits, modular designs. C01: Prime and Composite Numbers. C02: Fermat Numbers- GCD. C03: The Euclidean Algorithm. C04: The Chinese Remainder Theorem C05: General Linear Systems

DEPARTMENT OF PHYSICS

S.No.	Course Code	Course Title	Course Outcomes (CO)
1.	PS120	Paper I Mechanics and Ocillations	On completion of this course, the students will be able to: CO1: Develop understanding on the concept of scalar, vector fields, Gradient, Divergence and curl of vector fields. CO2: Able to apply the Gauss, stokes and Greens theorems in related problems. CO3: Identify and apply the laws of mechanics along with the necessary mathematics for solving numerically. CO4: Describe Newton's laws of motion and conservation principles. CO5: Able to articulate and describe relative motion, Inertial and non-inertial reference frames. CO4: Understand the Mechanics of rigid bodies, concept of Gyroscope and establish the rotational Kinematic relations. CO5: Explain the Gravitational potentials and fields, central forces and Kepler's laws. CO6: Differentiate between Galilean and Lorentz transformations. CO7: Describe the Michelson-Morley Experiment, Postulates of special theory of relativity. CO8: Understand and derive the Kepler's laws. CO9: Understand and derive the Kepler's laws. CO9: Understand and derive the Kepler's laws. CO9: Understand and botaining solution of the oscillator using differential equations and Lissajous figures CO10: Calculate logarithmic decrement, relaxation factor and quality factor of a harmonic oscillator.

2.	PS220	Paper-II	On completion of this course, the
4.	P5220	Thermal	students will be able to:
		Physics	CO1: Recall the laws of gasses and
			Kinetic theory of gasses.
			CO2 : Analyse the different transport
			Phenomena
			CO3: Understand the thermodynamic
			laws and entropy
			CO4: Derive the equations of
			thermodynamic potentials and
			establishes the relation among them.
			CO5 : Explain the Joule-Kelvin effect and
			methods of production of low
			temperature.
			CO6: Distinguish between adiabatic and
			Joule- Kelvin effect.
			CO7: Understand the Planks law, Wein's
			law and Reyleigh' Jeans Law and Stefans
			law and establishes relation among
			them.
			CO8 : Describe the experimental setups
			of optical pyrometers.
			CO9: Understand the concepts of phase
			space, Ensembles and postulates of
			statistical mechanics.
			CO10: Differentiate among Maxwell's-
			Boltzmann, Bose-Einstein, Fermi-Dirac
			distribution laws
3.	PS320	Paper – III	At the end of the course the students will
		Electromagnetic	be able to
		Theory	CO1: Recall the concepts of basics laws
			of electro statics and Magneto statics.
			CO2: Derive the Gauss laws and applies
			the Gauss law in Physics problems.
			CO3: Able to apply the Ampere's law in
			Straight, circular and solenoidal
			currents.
			CO4: Understand the working principle
			of Ballistic Galvanometer.
			CO5: Explain the Faraday's, Lenz's laws
			and concept of self, mutual Inductions
			and continuity Equation.
			CO6: Derive the Maxwell's equations in
			Vacuum and dielectric medium.
			CO7: Draws the current and voltage
			response of charging and discharging of
			LR, CR, RC and LCR Circuit.
			LR, CR, RC and LCR Circuit.
			LR, CR, RC and LCR Circuit.

			COP. Understand the series of
			CO8: Understand the concepts of passive, active elements, power series and network models.
			CO9: Explain the different network
			theorems and importance.
4.	PS420	Paper – IV –	On the completion of this course, the
		Waves and	students will be able to;
		Optics	CO1: Understand the fundamental of waves and transverse and longitudinal
			vibrations of bars
			CO2: Understand the properties and
			applications of light like reflection,
			refraction, interference, diffraction etc
			CO3 : Apply the principles of wave
			motion and superposition to explain the
			Physics of polarization, interference and
			diffraction.
			CO4: Understand the applications of
			interference in design and working of
			interferometers.
			CO5: In the laboratory course, student
			will gain hands-on experience of using
			various optical instruments and making
			finer measurements of wavelength of
			light using Newton Rings experiment,
			Fresnel Biprism etc. Resolving power of
			optical equipment can be learnt
			firsthand.
			CO6: Distinguish between Fresnel and
			Fraunhofer diffraction.
			CO7 :Explain the different methods of
			polarization.
			CO8: Describe the experimental setup
			and working principle of Babinet's
			compensator.
5.	PS520	DSE-VA	The students will be able to
		Modern Physics	CO1: Recall the limitations of Bohr's
			atomic model and understand the Concepts of Atomic spectra, types of
			molecular spectra, Vector atom model
			Stern-Gerlach Experiment and quantum
			numbers associated with coupling
			schemes.

	CO2: Distinguish among Zeeman,
	Paschen-Back and stark effect and
	anderstand experimental arrangement
	of Raman Spectra and its applications.
	CO3: Understand the central concepts of
	uantum mechanics: wave functions,
	nomentum and energy operator, the
	Schrodinger equation, time dependent
	and time independent cases, probability
	lensity and the normalization
	echniques, basic postulates of quantum
	nechanics.
	204: Understand the De-Broglie
F	Appothesis and Heisenberg Uncertainty Principle.
	CO5: Understanding the properties of
	nuclei like density, size, binding energy,
	nuclear forces and structure of atomic
	nucleus, liquid drop model and nuclear
	shell model and mass formula.
() () () () () () () () () ()	CO6: Ability to calculate the decay rates
	and lifetime of radioactive decays like
a	llpha, beta, gamma decay, Neutrinos
a	and its properties and role in theory of
b	oeta decay.
C	CO7: Explain different types of particle
d	letectors.
C	CO8: Differentiate between Crystalline
a	and amorphous substances, structures
	and understand the concepts of lattice,
	anit cell, miller indices, and diffraction of
	K-rays by crystalline materials.
	CO9 : Analyze the simple crystal
	tructures.
	CO10 : Explain the characteristics of
	erystals with different bondings.
	On completion of this course, the
-	students will be able to:
	CO1: Understand the different concepts
	of Programming in 'C'.
	nethods.
	CO3: Able to give numerical solutions of
	ordinary differential equations.
	CO4: Explain the different Algorithms
	and Monte Carlo simulations.

	DOCOO		
7.	PS620	DSE-VIA	After completion of the course, the
		Electronics	students will be able to;
			CO1: Understand the energy bands in
			solids and type of diodes.
			CO2: Understand different types of
			transistors, amplifier and oscillators.
			CO3: Explain special devises i.e FET,
			UJT, SCR, etc
			CO4: Applies the logic gates in simple
			electronic circuits.
			CO5: Understand the binary number
			system, hexa decimal and their
			conversion.
8.	PS621	DSE-VIB	After the completion of this course, the
		Applied optics	learner will be able to:
			CO1: Classifies the different types of
			laser systems.
			CO2: Understand the basic principles
			and applications of holography.
			CO3: Explain the Fourier and non-linear
			-
			optics
			CO4: Understand the different types of
			optical fibres and their structures.
9.	PS321	SEC1:	On completion of this course, the
		Experimental	students will be able to:
		methods and	CO1: Understand the different
		error analysis	measurement methods, least count,
			accuracy and types of errors.
			CO2: Understand the errors of
			computation and minimising methods.
			CO3: Understand the mean, mode and
			standard deviation.
			CO4: Explain the Binomial, passion,
			normal distributions and chi square test.
10.	PS421	SEC2:	After completion of the course, the
10.	1. 741	Digital	students will be able to;
		Electronics	CO1: Distinguish between intrinsic and
		EACCHOINCS	0
			extrinsic semi-conductors, P-type and
			N-type semiconductors.
			CO2: Able to apply rectifiers with and
			without filters in electronic circuits.
			CO3: Analyses different types amplifiers.
			CO4: Explain the construction and
			characteristics of photo diode, Photo
			transistors, LED, LCD, SCR and UJT.
			CO5 : Understand the concept of
			feedback oscillators and digital systems.
			iccubacia obcimatoro ana digitar systemo.

Department of Chemistry

S.No.	Course Code	Course Title	Course Outcomes (CO)
1.	BS106	Paper I	On completion of this course, the students will be able to:CO1:Students will learn the basic knowledge of s.p groups of Periodic table CO2:CO2:Students will understand the
2.	BS206	Paper-II	On completion of this course, the studentswill be able to:CO1: Students will explore the propertiesof p-block Elements, Interhalogens,Chemistry of Zero group elements,Chemistry of d-block elementsCO2: Students will explore the physicaland chemical properties of AromaticHydrocarbonsCO3: Students will learn Dilute Solutions& Colligative PropertiesCO4: Students will explore the propertiesof SolutionsCO5: Students will explore the propertiesof Solid-state ChemistryCO6: Students will learn the Theory ofQuantitative Analysis
3.	BS 306	Paper – III	At the end of the course the students will be able toCO1: Students will learn the Theory of Quantitative Analysis Chemistry of f-block elementsCO2: Students will learn the Theory of Quantitative Analysis Coordination Compounds chemistry

			CO3: Students will explore the properties of Metal carbonyls and Organometallic Chemistry CO4: Students will explore the physical and chemical properties of Carboxylic acids and derivatives and applications CO5: Student will learn interrelation of <u>heat</u> and <u>work</u> with <u>chemical</u> <u>reactions</u> or with physical changes of <u>state</u> in Thermodynamics CO6: Student will understand the Bioinorganic Chemistry
4.	BS 301	SEC –Safety rules in Chemistry laboratory and lab reagents	To improve the skills of students in the application of theory and practical knowledge. To fill the gap between theory and practical. To train the students in understanding laboratory safety rules and to improve the skills in preparation of laboratory reagents CO1: general rules for working safely in a chemical laboratory Recognize the Hazards CO2: Assess the Risks of the Hazards
			CO3: Minimize the Risks of the Hazards CO4: Preparation of Lab Reagents
5.	BS 301	SEC- Remedial methods for pollution, drinking water and soil fertility	On the completion of this course, the students will be able to; CO1: Acquire skills to help the individuals to identify and solve problems related to pollution CO2: Apply simple and useful methods of purification of water CO3: Educate people about adverse effects of cell phone radiation CO4: Identify the suitable soil for the growth of different crops
6.	BS 406	Paper – IV –	On the completion of this course, the students will be able to; CO1: Simple inorganic molecules and coordination complexes CO2: Carboxylic acids and derivatives, Synthesis based on Carbanions CO3: Electrochemistry & EMF CO4: Synthetic Strategies CO5: Asymmetric synthesis

7.	BS 401	SEC-3: Materials and their Applications	After completion of the course, the students will be able to; CO1: Identify different types materials and their applications CO2: Acquire the knowledge of different types of alloys and their applications CO3: Identify different types of glass and ceramics CO4: Know the Chemicals required for cement preparation and the process of preparation CO5: Identify different types of polymers and their applications
8.	BS 401	SEC-4: Chemistry of Cosmetics and Food Processing	On completion of this course, the students will be able to: CO1: Identify the chemicals involved in cosmetic preparation, food processing and preservation CO2: Acquire the knowledge of preparation of certain cosmetics CO3: Understand the food processing procedure and apply in their daily life CO4: Identify adulterants and educate the people around them CO5: Run their own small-scale Industry
9.	BS 502	GE1 – Pharmaceuticals	After completion of the course, the students will be able to; CO1: Student learns history of pharmacy, development of pharmacy profession and industry in India. CO2: Understands various routes of drug administration, concept of dosage forms, unit operations involved in preparation of these dosage forms. CO3: Describes alternative system of medicines CO4: Explain the factors which influence the design of pharmaceutical dosage forms. CO5: Summarize the factors influencing formulation of various dosage form like solution
10.		GE2 Materials and their Applications	After completion of the course, the

			CO3: Identify different types of glass and
			ceramics
			CO4: Know the Chemicals required for
			cement preparation and the process of
			preparation
			CO5: Identify different types of polymers
			and their applications
11.	BS505	DSC:	After the completion of this course, the
			learner will be able to:
			CO1: Understand the theories of bonding,
			stabilities and applications coordination
			compounds
			CO2: Understand the structures of
			Boranes and Carboranes
			CO3: Gain knowledge of different types of
			spectroscopy and enable to analyse and
			interpret different spectral data
			CO4: Understanding reactions and
			reaction mechanism of nitrogen
			containing functional groups.
			CO5: Acquire the knowledge of reaction
			rates, rate laws, and applications of
			chemical kinetics in studying enzyme
10	DOFORA	DSE1A:	catalysis
12.	BS508A		On completion of this course, the students
		Instrumental	will be able to:
		methods of	CO1: Gain the knowledge of principle and
		Analysis	methods of solvent extractions
			CO2: Understand the classification of
			methods of chromatographic techniques,
			nature of adsorbents and solvent systems
			CO3: identify the usage of different
			spectroscopic methods to find the purity
			of compounds prepared
			CO4: Analyse the given compounds
			CO5: Acquires the knowledge of electro
			analytical methods
13.	BS508B	DSE1B: Industrial	After completion of the course, the
		Chemistry and	,
		Catalysis	CO1: understand the Kinetics of
			heterogeneous catalysis
			CO2: Identify the different types synthetic
			and natural dyes and their applications
			CO3: Identifies different Metallurgical
			procedures
			CO4: Understand phase transfer catalysis
			and enzyme catalysis
			CO5: Explain Michaelis- Menten
			mechanism
	1	l	

-	DOCOT	Daa	
14.	BS605	DSC:	On completion of this course, the students
			will be able to;
			CO1: To know the concepts of inorganic
			reaction mechanisms
			CO2: Know about biological significance of
			essential elements and toxicity of heavy
			metals
			CO3: To gain the knowledge of HSAB
			concept and stability of complexes
			CO4: To understand the principle of
			NMR spectroscopy and interpretation of
			spectrum
			CO5: Acquire the knowledge of mass
			spectrometry for the analysis of given
			sample
			CO6: Understand different types of
			carbohydrates and amino acids
			structures
15.	BS608A	DSE2A: Medicinal	On the completion of the course the
		Chemistry	students will be able to
			CO1: acquire the basics of medicinal
			chemistry, biophysical properties
			CO2: To know the mechanism of action of
			drugs and ADME properties of drugs
			CO3: To gain the knowledge of molecular
			messengers, health promoting drugs and
			deficiency disorders
			CO4: Understands the Biophysical and
			chemical properties of enzymes,
			hormones, vitamins
			CO5: understand the Drug metabolism
16.	BS608B	DSE2B:	On completion of this course the students
		Agricultural and	
		Fuel Chemistry	CO1: Know different types of Pesticides
			and their structures
			CO2: Identifies potential pesticidal plants
			of India and the role of Neem in plant
			protection
			CO3: Understand soil fertility and the
			need of fertilizers
			CO4: Understand the importance and
			need of Organic farming
			CO5: Acquire the knowledge of refining
			process of crude oil and fuel derived from
			Biomass
L		l	210111000

Vivekananda Government Degree College, Vidyanagar, Hyderabad.

Department of Statistics

Introduction:

B.Sc. Statistics program consists of 132 credits spread over six semesters. Each credit has one hour of class room teaching per week. This program emphasizes both theory and applications of statistics and is structured to provide knowledge and skills in depth necessary for the employability of students in industry, other organizations, as well as in academics.

Course Objectives:

- To prepare graduates who are not only statistically sound but also capable of using their appropriate statistical skills in interdisciplinary areas such as finance, health, agriculture, government, business, industry, telecommunication, and bio-statistics. As a result, they can pursue their future career either in the core field or in the applied field of Statistics.
- To familiarize students with computational techniques and software used in the statistical arena.
- To provide a solid ground in the best practices of collating and disseminating information.
- To prepare students for undertaking further study.
- To teach students to construct practical statistical models for several processes in the real-world

Program Learning Outcomes in B.Sc. Statistics:

The student graduating with the Degree B.Sc. Statistics should be able to

1. Demonstrate the ability to use skills in Statistics and different practicing areas for formulating and tackling Statistics related problems and identifying and applying appropriate principles and methodologies to solve a wide range of problems associated with Statistics.

2. Acquire

(i) fundamental/systematic or coherent understanding of the academic field of Statistics and its different learning areas and applications.

(ii) Procedural knowledge that creates different types of professionals related to subject area of Statistics, including professionals engaged in government/public service and private sectors;

(iii) Skills in areas related to one's specialization area within the disciplinary/subject area of Statistics and emerging developments in the field of Statistics.

3. Recognize the importance of statistical modeling and computing, and the role of approximation and mathematical approaches to analyze the real problems using various statistical tools.

4. Plan and execute Statistical experiments or investigations, analyze and interpret data/information collected using appropriate methods, including the use of appropriate statistical software including programming languages, and report accurately the findings of the experiment/investigations.

5. Demonstrate relevant generic skills and global competencies such as

(i) Problem-solving Skills that are required to solve different types of Statistics related problems with well-defined solutions, and tackle open-ended problems that belong to the disciplinary-area boundaries;

(ii) Investigative Skills, including skills of independent thinking of Statistics-related issues and problems;

(iii) Communication Skills involving the ability to listen carefully, to read texts and reference material analytically and to present information in a concise manner to different groups/audiences of technical or popular nature;

(iv) Analytical Skills involving paying attention to detail and ability to construct logical arguments using correct technical language related to Statistics and ability to translate them with popular language when needed;

(v) ICT Skills;

(vi) Personal Skills such as the ability to work both independently and in a group.

6. Demonstrate professional behavior such as.

(i) Being objective, unbiased and truthful in all aspects of work and avoiding unethical, irrational behavior such as fabricating, falsifying or misrepresenting data or committing plagiarism;

(ii) The ability to identify the potential ethical issues in work-related situations

(iii) Appreciation of intellectual property, environmental and sustainability issues and

(iv) Promoting safe learning and working environment.

Course Outcomes:

On successful completion of 132 credit six-semester an under-graduate student will be able to

- Knowledge of Statistics and its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc.
- Ability to distinguish between random and non-random experiments.
- Basic knowledge of complete enumeration and sample, sampling frame, sampling distribution, sampling and non-sampling errors, principal steps in sample surveys, limitations of sampling etc.,
- Applications to real data by means of laboratory assignments.
- Real data implementation of various demographic concepts.
- The basic idea of various terminologies in epidemiology, clinical trial experiments involving different phases etc.,
- Various data management and data collection systems for a good clinical trial practice.
- Analyze, interpret and take appropriate decisions in solving real life problems using statistical tools.
- Various basic concepts related to computer architecture and its organization, various peripheral devices.
- Understand basic concepts and aspects related to research, data collection, analyses and interpretation.

S.No.	Course Code	Course Title	Course Outcomes
1	Code 123 (Paper- I)	Descriptive Statistics and Probability	On completion of the course students will be able to : CO1: Knowledge of Statistics and its scope and importance in various areas such as Medical, Engineering, Agricultural and Social Sciences etc. CO2: Information about various Statistical organizations in India and their functions for societal developments, CO3: Knowledge of various types of data, their organization and evaluation of summary measures such as measures of central tendency and dispersion etc. CO4: Knowledge of other types of data reflecting quality characteristics including concepts of independence and association between two attributes, CO5: Insights into preliminary exploration of different types of data. CO6: Knowledge of correlation, regression analysis, regression diagnostics, partial and multiple correlations.
2	123 (PAPER-II)	Probability Distributions	On completion of the course students will be able to : CO1: Ability to distinguish between random and non-random experiments, CO2: Knowledge to conceptualize the probabilities of events including frequency and axiomatic approach. Simultaneously, they will learn the notion of conditional probability including the concept of Bayes' Theorem, CO3: Knowledge related to concept of discrete and continuous random

			variables and their probability
			distributions including expectation
			and moments,
			CO4: Knowledge of important
			discrete and continuous distributions
			such as Binomial, Poisson,
			Geometric, Negative Binomial and
			Hyper-geometric, normal, uniform,
			exponential, beta and gamma
			distributions,
3	123	Statistical	On completion of the course students
	(PAPER-	Methods and	will be able to :
	III)	Theory of	CO1: Concept of law large numbers
		Estimation	and their uses
			CO2: Concept of central limit
			theorem and its uses in statistics
			CO3: Concept of random sample
			from a distribution, sampling
			distribution of a statistic, standard
			error of important estimates such as
			mean and proportions,
			CO4: Knowledge about important
			inferential aspects such as point
			estimation, test of hypotheses and
			associated concepts,
			CO5: Knowledge about inferences
			from Binomial, Poisson and Normal
			distributions as illustrations,
			CO6: Knowledge about order
			statistics and associated distributions,
			CO7: Concept about non-parametric
			method and some important non-
			parametric tests.
4	Paper V	Sampling	On completion of the course students
	F ·	Techniques	will be able to :
		and Designs	(CO1 Basic knowledge of complete
		of	enumeration and sample, sampling
		Experiments	frame, sampling distribution,
			sampling and non-sampling errors,
			principal steps in sample surveys,
			limitations of sampling etc.,
			miniations of sampling etc.,

4	Paper IV	Statistical	 CO2 Introduced to various statistical sampling schemes such as simple, stratified and systematic sampling. CO3: An idea of conducting the sample surveys and selecting appropriate sampling techniques, CO4: Knowledge about comparing various sampling techniques. CO5: Carry out one way and two way Analysis of Variance, CO6: Understand the basic terms used in design of experiments, CO7: Use appropriate experimental designs to analyze the experimental data, CO8: Apply Multiple range tests, the multiple t-test, Student-Newman-Keuls test, Duncan's multiple range test, Tukey's test, CO9: Give statistical interpretation of the experimental results obtained. The students will acquire (CO1) Concept of law large
			 (CO1) Concept of law large numbers and their uses (CO2) Concept of central limit theorem and its uses in statistics (CO3) concept of random sample from a distribution, sampling distribution of a statistic, standard error of important estimates such as mean and proportions, (CO4) knowledge about important inferential aspects such as point estimation, test of hypotheses and associated concepts, (CO5) knowledge about inferences from Binomial, Poisson and Normal distributions, (CO6) knowledge about order statistics and associated distributions,

			(CO7) concept about non-parametric
			method and some important non-
			parametric tests.
5	Paper V	Design of	On completion of the course students
		sampling,	will be able to :
		Time Series,	CO1: Time series data, its
		Index	applications to various fields and
		numbers and	
		Demand	CO2: Fitting and plotting of various
		Analysis	growth curves such as modified
			exponential, Gompertz and logistic
			curve,
			CO3: Fitting of trend by Moving
			Average method, CO4:
			Measurement of Seasonal Indices by
			Ratio-to-Trend , Ratio-to-Moving
			Average and Link Relative methods,
			CO5: Calculation of variance of
			random component by variate
			component method,
			CO6: Applications to real data by
6	DeneryVI	Ctatistical	means of laboratory assignments.
6	Paper VI	Statistical	On completion of the course students
		Quality	will be able to :
		control and	CO1: Modelling of individual and
		Reliability	aggregate losses,
			CO2: Fitting of distributions to
			claims data, deductibles and retention
			limits, proportional and excess-of-
			loss reinsurance,
			(CO3: Risk models: models for
			individual claims and their sums,
			CO4: Finding distribution of
			aggregate claims, compound
			distributions and their applications,
			CO5: Applications of credibility
			theory,
			(CO6: Finding of survival function,
			curate future lifetime, force of
			mortality,
L		1	

			CO7: Handling problems on joint life and last survivor status and multiple decrement model, CO8: Mean and variance of various continuous and discrete payments for assurance and annuity contracts, CO9: Calculation of various payments from life tables using principle of equivalence, net premiums, prospective and retrospective provisions/reserves, (j) real illustrations for the concepts mentioned above through laboratory assignments.
7	Paper VII	Design of Experiments, vital statistics and official statistics.	will be able to :
8	Paper VIII	Operations Research	assignments. On completion of the course students will be able to: CO1: Know how to formulate a real life problem into mathematical problem.

CO2:solve the mathematical linear
problem by using graphical method
,simplex method ,Big M method
and Two phase method
CO3: Can formulate transportation
problem and solve by North West
corner method, Matrix minimum
method and VAM method also
MODI method.
CO4:Can solve assignment problem
using Hungarian method.
CO5:Can solve Two machine and n
jobs.

DEPARTMENT OF COMPUTERS

PROGRAMME	PROGRAMME OUTCOMES(PO)
B.Sc. (Physical sciences / life sciences)	 PO1: Computational knowledge: Apply the knowledge of mathematics, science fundamentals and a technical specialization to the solution of complex mathematical problems. PO2: Problem analysis: Identify, formulate, reverse search literature, and analyze complex science problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and computer science. PO3: Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the programming practice. PO4: Individual and team work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings. PO5: Communication: Communicate effectively on software development activities with the computer science community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PROGRAMME	PROGRAMME SPECIFIC OUTCOMES(PSO)
B. Sc (Computer Science)	 PSO1: Students will acquire basics of C , C++ and ,Java Programming languages to develops Applications . PSO2: To understand the algorithms to maintain memory in an Organized way. Stacks, queues, lists, trees, graphs algorithms used in applications. PSO3: Students will analyse system, Relational database model, ER model and distributed databases to write good queries using a structured query language called SQL. PSO4: Students will gain skills of usage of Web Technologies to design Web pages. PSO5: Computer Networks are the basis of communication in IT . they are used in a huge variety of ways and can include many different types of networks.

B. Sc (Computer Applications)	 PSO1: Students will acquire basics of C, C++ & JAVA Programming languages to develop Applications. PSO2: Students will analyse system, Relational database model, ER model and distributed databases to write good queries using a structured query language called SQL PSO3: To acquire the knowledge of multimedia systems PSO4: Students will gain skills of usage of Web Technologies to design Web pages.
--	---

PROGRAMME SPECIFIC OUTCOMES (PSO)

S. No.	Course	Course Title	Course Outcomes (CO)
	Code		
1.	BS106	Paper-I	CO1: To understand the fundamentals of computers and
		Programming	programming languages.
		in C	CO2: Understanding concepts of algorithms, flow charts,
			pseudo code, data types and operators.
			CO3 : Ability to work with arrays of complex objects.
			CO4 : Understanding a concept of functional hierarchical code
			organization.
			CO5 : Ability to work with pointers, structures and files.
			CO6 : Ability to handle possible errors during program
			execution.
2.	BS206	Paper-II	CO1 : Understand importance of object oriented programming
		Programming	and difference between structured oriented and object oriented
		in C++	programming features.
			CO2 : Able to make use of objects and classes for developing
			programs
			CO3 : Ability to implement constructors and array of objects.
			CO4 : Design and implement C++ programs for complex
			problems, making good use of the inheritance and
			polymorphism.
			CO5 : Ability to handle runtime errors by using exception
			handling techniques.
3.	BS306	Paper – III	CO1: To understand the algorithms to maintain memory in an
		Data	organized way.
		Structures	CO2: Use the appropriate data structure in context of solution of
		using c++	given problem.
			CO3 : Understanding concepts of stacks, queues and linked list to
			organize memory of applications.
			CO4 : Select the appropriate searching or sorting algorithm
			based on the algorithm's behaviour.
			CO5: Ability to have knowledge of tree and graphs concepts.
4.	BS306	(LS) Paper –	CO1: Identify the basic concepts and various data model used in
		III	database design ER modelling concepts and architecture use
		Relational	and design queries using SQL
		Database Mana	CO2: Recognize and identify the use of normalization and
		gement System	functional dependency, indexing and hashing technique used in
			database design.
			CO3: Apply and relate the concept of transaction, concurrency
			control and recovery in database.
			CO4: To understand recovery system and be familiar with
			introduction to web database and distribute databases.

BMS. I used in ture use ion and used in
currency iar with
d
lishes
ods,
Jus,
ns
rams
1
ey work
ce and
ce una
th the
eads in
on in
clude
odel
otocols
f.
ge for
ython.
Juion.
n

	BS402	SEC-4:	CO1 : To understand Python is a useful scripting language for
10.	D5402	Python-II	developers.
		I ython-II	CO2: Ability to implement stings, slicing, testing, searching
			and manipulating.
			CO3: Design and implement Python programs for complex
			problems, making good use of the inheritance and
			polymorphism. CO4: To understand how to design GUI, widgets, labels and
			buttons in Python programming.
11.	BS502	SEC-3:	CO1: To understand the structure, function and
		Computer	characteristics of computer systems
		Organization	CO2: To understand the design of the various functional
			units and components of computers.
			CO3: To identify the elements of modern instructions sets
			and their impact on processor design.
			CO4: To explore the memory organization
12.	BS602	SEC-4:	CO1: Analyze and resolve security issues in networks and
-	_	Information	computer systems to secure an IT infrastructure.
		Security	CO2: To Implement Design, develop, test and evaluate secure
			software.
			CO3: Develop policies and procedures to manage enterprise security risks.
			CO4: Evaluate and communicate the human role in security
			systems with an emphasis on ethics, social engineering
			vulnerabilities and training.
1.0			CO5: Interpret and forensically investigate security incidents.
13.	BS506	DSE 1E:	CO1: Identify the different types of operating systems and their responsibilities.
		Operating Systems	CO2: Understanding issues in different file systems
		OVSLEIUS	8
		~ ,	and describes the access methods for files and solve problems of
			disk scheduling.
			disk scheduling. CO3: Solve the memory management problems with techniques
			disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement
			disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms.
			disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement
			 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems.
			 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance,
14	BSCOC		 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection.
14.	BS606	DSE 2F:	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information
14.	BS606	DSE 2F:	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies CO3: Develop solution to complex problems using appropriate
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies CO3: Develop solution to complex problems using appropriate method, technologies, frameworks, web services and content
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies CO3: Develop solution to complex problems using appropriate method, technologies, frameworks, web services and content management.
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies CO3: Develop solution to complex problems using appropriate method, technologies, frameworks, web services and content management. CO4: Become familiar with graphic design principles that relate
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies CO3: Develop solution to complex problems using appropriate method, technologies, frameworks, web services and content management.
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies CO3: Develop solution to complex problems using appropriate method, technologies, frameworks, web services and content management. CO4: Become familiar with graphic design principles that relate to web design and learn how to implement theories into practice CO5: Develop skills in analyzing the usability of a website. CO6: Learn techniques of responsive web design, including
14.	BS606	DSE 2F: Web	 disk scheduling. CO3: Solve the memory management problems with techniques like paging and segmentation and also use page replacement algorithms. CO4: Explain the concurrency conditions and critical section problem and apply the solutions to process synchronization problems. CO5: Define deadlock and implement methods for its avoidance, detection and identify goals of protection. CO1: Understand the principles of creating an effective web page including an in depth consideration of information architecture. CO2: Develop web based application using suitable client side and server side web technologies CO3: Develop solution to complex problems using appropriate method, technologies, frameworks, web services and content management. CO4:Become familiar with graphic design principles that relate to web design and learn how to implement theories into practice CO5: Develop skills in analyzing the usability of a website.