
KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA

(Affiliated to Kakatiya University)

DETAILS OF STUDENT SEMINAR

THE YEAR 2021

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA.

(Affiliated to Kakatiya University)

DETAILS OF STUDENT SEMINARS OF I,III & V SEMESTER

FOR

THE YEAR 2021-22

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

KAKATIYA GOVERNMENT COLLEGE

OF I,III & V SEMESTER

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

 KAKATIYA GOVERNMENT COLLEGE
 HANUMAKONDA, DIST. HANUMAKONDA

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Consolidate details of student seminar of I
for

S.No Date Group

1. 09-12-2021 BSC(MPCs) IIYr

2. 10-12-2021 MStDs IIYr

3. 20-12-2021
BSC(MPCs) IYr
ISem

4. 20-12-2021
BSC(MPCs) IYr
ISem

5. 06-01-2022
BSC(MPCs) _
IIIYr – V Sem

6. 06-01-2022
B.Com CA IIYr
IIISem

7. 07-01-2022
BSC(MPCs) –
IIIYr – V Sem

8. 11-02-2022
BSC(MPCs) –
IIIYR –V Sem
SEC-B

9. 14-02-2022
B.Com CA IIYr
IIISem

10. 21-02-2022
B.Com CAIIYr
IIISem

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA.
 (Affiliated to Kakatiya University)

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Consolidate details of student seminar of I-III-V Semesters

 the Academic year 2021-22

 Student Name Topic

BSC(MPCs) IIYr E. Akhila Stacks

V. Vinayak HTML

BSC(MPCs) IYr -
K. Akhila C - Tokens

BSC(MPCs) IYr -
K. Pravalika

Area of Circle
Program

BSC(MPCs) _
V Sem

M. Rohitha Stacks

B.Com CA IIYr -
SK. Sameer SQL

–
V Sem A. Sai Sumalya Constructor

–
V Sem- V. Tharun Inheritance in Java

B.Com CA IIYr -
K. Prudhviraj SQL

CAIIYr - K. Abhinav
Kalyan

Concurrency
control in RDBMS

KAKATIYA GOVERNMENT COLLEGE

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

V Semesters

Lecturer Name

M. Ramanakar

M. Ramanakar

T. Ragotham Reddy

T. Ragotham Reddy

D. Rajkumar

K. Ramesh

Dr. D. Suresh Babu

 V. Ramesh

K. Sravana Kumari

D. Praveen

 KAKATIYA GOVERNMENT COLLEGE
 HANUMAKONDA, DIST. HANUMAKONDA

DEPARTMENT

Student Name : E. Akhila
Group & Year : BSC(MPCs) –
Subject : Data Structure Using C++

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA

 (Affiliated to Kakatiya University)

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Student Seminar
E. Akhila Date : 09-12

– IIYR – SEC-A Topic : STACK
Data Structure Using C++ Faculty Involved

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA.

OF COMPUTER SCIENCE & APPLICATIONS

-2021
STACK

Faculty Involved: M. Ramanakar

Stack is a fundamental data structure which is used to store elements in a linear fashion.
Stack follows LIFO (last in, first
that the element which was added last to the

Stack In C++
A stack is similar to real-life stack or a pile of things that we stack one above the other.

Given below is a pictorial representation of Stack.

As shown above, there is a pile of plates stacked on top of each other. If we want to add another item to it,
then we add it at the top of the stack as shown in the above figure (left
an item to stack is called “Push”.

On the right side, we have shown an opposite operation i.e. we remove an item from the stack. This is also
done from the same end i.e. the top of the stack. This operation is called “

As shown in the above figure, we see that push and pop are carried out from the same end. Thi
stack to follow LIFO order. The position or end from which the items are pushed in or popped out to/from
the stack is called the “Top of the

Initially, when there are no items in the stack, the top of the stack is set to
stack, the top of the stack is incremented by 1 indicating that the item is added. As opposed to this, the top of
the stack is decremented by 1 when an item is popped out of the stack.

Next, we will see some of the basic operations of the
implementing the stack.

Basic Operations
Following are the basic operations that are supported by the stack.

 push – Adds or pushes an element into the stack.
 pop – Removes or pops an element out of the
 peek – Gets the top element of the stack but doesn’t remove it.
 isFull – Tests if the stack is full.
 isEmpty – Tests if the stack is empty.

S T A C K

Stack is a fundamental data structure which is used to store elements in a linear fashion.
 out) order or approach in which the operations are performed. This means

that the element which was added last to the stack will be the first element to be removed from the stack.

life stack or a pile of things that we stack one above the other.

Given below is a pictorial representation of Stack.

of plates stacked on top of each other. If we want to add another item to it,
then we add it at the top of the stack as shown in the above figure (left-hand side). This operation of adding

shown an opposite operation i.e. we remove an item from the stack. This is also
done from the same end i.e. the top of the stack. This operation is called “Pop”.

As shown in the above figure, we see that push and pop are carried out from the same end. Thi
stack to follow LIFO order. The position or end from which the items are pushed in or popped out to/from

 stack”.

Initially, when there are no items in the stack, the top of the stack is set to -1. When we ad
stack, the top of the stack is incremented by 1 indicating that the item is added. As opposed to this, the top of
the stack is decremented by 1 when an item is popped out of the stack.

Next, we will see some of the basic operations of the stack data structure that we will require while

Following are the basic operations that are supported by the stack.
Adds or pushes an element into the stack.

Removes or pops an element out of the stack.
Gets the top element of the stack but doesn’t remove it.
Tests if the stack is full.

Tests if the stack is empty.

Stack is a fundamental data structure which is used to store elements in a linear fashion.
order or approach in which the operations are performed. This means

stack will be the first element to be removed from the stack.

life stack or a pile of things that we stack one above the other.

of plates stacked on top of each other. If we want to add another item to it,
hand side). This operation of adding

shown an opposite operation i.e. we remove an item from the stack. This is also
”.

As shown in the above figure, we see that push and pop are carried out from the same end. This makes the
stack to follow LIFO order. The position or end from which the items are pushed in or popped out to/from

1. When we add an item to the
stack, the top of the stack is incremented by 1 indicating that the item is added. As opposed to this, the top of

stack data structure that we will require while

Illustration

The above illustration shows the sequence of operations that are performed on the stack.
empty. For an empty stack, the top of the stack is set to

Next, we push the element 10 into the stack. We see that the top of the stack now points to element 10.

Next, we perform another push operation with element 20, as a resu
points to 20. This state is the third figure.

Now in the last figure, we perform a pop () operation. As a result of the pop operation, the element pointed
at the top of the stack is removed from the stack. Hence in the
from the stack. Thus the top of the stack now points to 10.

In this way, we can easily make out the LIFO approach used by stack.
Using Arrays

Following is the C++ implementation
#include<iostream>
using namespace std;
 #define MAX 1000 //max size for stack
 class Stack
{
 int top;
 public:
 int myStack[MAX]; //stack array

 Stack() { top = -1; }
 bool push(int x);
 int pop();
 bool isEmpty();
};

 //pushes element on to the stack

The above illustration shows the sequence of operations that are performed on the stack.
empty. For an empty stack, the top of the stack is set to -1.

Next, we push the element 10 into the stack. We see that the top of the stack now points to element 10.

Next, we perform another push operation with element 20, as a result of which the top of the stack now
points to 20. This state is the third figure.

Now in the last figure, we perform a pop () operation. As a result of the pop operation, the element pointed
at the top of the stack is removed from the stack. Hence in the figure, we see that element 20 is removed
from the stack. Thus the top of the stack now points to 10.

In this way, we can easily make out the LIFO approach used by stack.

implementation of stack using arrays:

#define MAX 1000 //max size for stack

myStack[MAX]; //stack array

The above illustration shows the sequence of operations that are performed on the stack. Initially, the stack is

Next, we push the element 10 into the stack. We see that the top of the stack now points to element 10.

lt of which the top of the stack now

Now in the last figure, we perform a pop () operation. As a result of the pop operation, the element pointed
figure, we see that element 20 is removed

 bool Stack::push(int item)
 {
 if (top >= (MAX-1)) {
 cout << "Stack Overflow!!!";
 return false;
 }
else {
 myStack[++top] = item;
 cout<<item<<endl;
 return true;
 }
}

//removes or pops elements out of the stack
int Stack::pop()
{
 if (top < 0) {
 cout << "Stack Underflow!!";
 return 0;
 }
else {
 int item = myStack[top--];
 return item;
 }
}

//check if stack is empty
bool Stack::isEmpty()
{
 return (top < 0);
}

// main program to demonstrate stack functions
int main()
{
 class Stack stack;
 cout<<"The Stack Push "<<endl;
 stack.push(2);
 stack.push(4);
 stack.push(6);
 cout<<"The Stack Pop : "<<endl;
 while(!stack.isEmpty())
 {
 cout<<stack.pop()<<endl;
 }

 return 0;
}

Output:
The Stack Push
2
4
6
The Stack Pop:
6
4
2

In the output, we can see that the elements are pushed into the stack in one order and are popped out of the
stack in the reverse order. This exhibits the LIFO (Last in,

In the output, we can see that the elements are pushed into the stack in one order and are popped out of the
stack in the reverse order. This exhibits the LIFO (Last in, First out) approach for the stack.

In the output, we can see that the elements are pushed into the stack in one order and are popped out of the
First out) approach for the stack.

KAKATIYA GOVERNMENT COLLEGE
 HANUMAKONDA, DIST. HANUMAKONDA

DEPARTMENT

Student Name : V. Vinayak
Group & Year : BSC(MStCs) – IIYR
Subject : Data Engineering

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA

 (Affiliated to Kakatiya University)

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Student Seminar
 Date : 1

IIYR Topic : HTML
Data Engineering Faculty Involved:

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA.

OF COMPUTER SCIENCE & APPLICATIONS

10-12-2021
HTML

Faculty Involved: M. Ramanakar

HTML is an acronym which stands for
web applications. Let's see what is meant by Hypertext Markup Language, and Web page.

Hyper Text: HyperText simply means "Text within Text." A text has a link within it, is a hypertext. Whenever
you click on a link which brings you to a new webpage, you have clicked on a hypertext. HyperText is a way to
link two or more web pages (HTML documents) with

Markup language: A markup language is a computer language that is used to apply layout and formatting
conventions to a text document. Markup language makes text more interactive and dynamic. It can turn text
into images, tables, links, etc.

Web Page: A web page is a document which is commonly written in HTML and translated by a web browser. A
web page can be identified by entering an URL. A Web page can be of the static or dynamic type.
of HTML only, we can create static web pages

Hence, HTML is a markup language which is used for creating attractive web pages with the help of styling, and
which looks in a nice format on a web browser. An HTML document is made of many HTML tags and each HTML
tag contains different content.

Let's see a simple example of HTML.

1. <!DOCTYPE>
2. <html>
3. <head>
4. <title>Web page title
5. </head>
6. <body>
7. <h1>Write Your First
8. <p>Write Your First
9. </body>
10. </html>

Description of HTML Example

<!DOCTYPE>: It defines the document type or it instruct the browser about the version of HTML.

<html > :This tag informs the browser that it is an HTML document. Text between html tag describes the web
document. It is a container for all other elements of HTML except <!DOCTYPE>

<head>: It should be the first element inside the <html> element, which contains
about the document). It must be closed before the body tag opens.

<title>: As its name suggested, it is used to add title of that HTML page which appears at the top of the browser
window. It must be placed inside the head tag and should close immediately. (Optional)

<body> : Text between body tag describes the body content of the
contains the main content of the HTML document.

H T M L

HTML is an acronym which stands for Hyper Text Markup Language which is used for creating web pages and
web applications. Let's see what is meant by Hypertext Markup Language, and Web page.

HyperText simply means "Text within Text." A text has a link within it, is a hypertext. Whenever
you click on a link which brings you to a new webpage, you have clicked on a hypertext. HyperText is a way to
link two or more web pages (HTML documents) with each other.

A markup language is a computer language that is used to apply layout and formatting
conventions to a text document. Markup language makes text more interactive and dynamic. It can turn text

A web page is a document which is commonly written in HTML and translated by a web browser. A
web page can be identified by entering an URL. A Web page can be of the static or dynamic type.
of HTML only, we can create static web pages.

Hence, HTML is a markup language which is used for creating attractive web pages with the help of styling, and
which looks in a nice format on a web browser. An HTML document is made of many HTML tags and each HTML

ee a simple example of HTML.

title</title>

First Heading</h1>
First Paragraph.</p>

Description of HTML Example

It defines the document type or it instruct the browser about the version of HTML.

:This tag informs the browser that it is an HTML document. Text between html tag describes the web
document. It is a container for all other elements of HTML except <!DOCTYPE>

It should be the first element inside the <html> element, which contains
about the document). It must be closed before the body tag opens.

As its name suggested, it is used to add title of that HTML page which appears at the top of the browser
window. It must be placed inside the head tag and should close immediately. (Optional)

: Text between body tag describes the body content of the page that is visible to the end user. This tag
contains the main content of the HTML document.

which is used for creating web pages and
web applications. Let's see what is meant by Hypertext Markup Language, and Web page.

HyperText simply means "Text within Text." A text has a link within it, is a hypertext. Whenever
you click on a link which brings you to a new webpage, you have clicked on a hypertext. HyperText is a way to

A markup language is a computer language that is used to apply layout and formatting
conventions to a text document. Markup language makes text more interactive and dynamic. It can turn text

A web page is a document which is commonly written in HTML and translated by a web browser. A
web page can be identified by entering an URL. A Web page can be of the static or dynamic type. With the help

Hence, HTML is a markup language which is used for creating attractive web pages with the help of styling, and
which looks in a nice format on a web browser. An HTML document is made of many HTML tags and each HTML

It defines the document type or it instruct the browser about the version of HTML.

:This tag informs the browser that it is an HTML document. Text between html tag describes the web

It should be the first element inside the <html> element, which contains the metadata(information

As its name suggested, it is used to add title of that HTML page which appears at the top of the browser
window. It must be placed inside the head tag and should close immediately. (Optional)

page that is visible to the end user. This tag

<h1> : Text between <h1> tag describes the first level heading of the webpage.

<p> : Text between <p> tag describes the paragraph of the webpage.

Features of HTML

1) It is a very easy and simple language

2) It is very easy to make an effective presentation

3) It is a markup language, so it provides a flexible way to de

4) It facilitates programmers to add a
browsing of the user.

5) It is platform-independent because it can be displayed on any platform like Windo
Macintosh, etc.

6) It facilitates the programmer to add
attractive and interactive.

7) HTML is a case-insensitive language, which means we can use tags either in lower

Building blocks of HTML

An HTML document consist of its basic building blocks which are:

o Tags: An HTML tag surrounds the content and apply meaning to it. It is written between < and >

brackets.

o Attribute: An attribute in HTML provides extra inf

the start tag. An HTML attribute contains two fields: name & value.

Syntax
<tag name attribute_nam

o Elements: An HTML element is an individual component of an HTML file. In an HTML file, everything

written within tags are termed as HTML elements.

: Text between <h1> tag describes the first level heading of the webpage.

: Text between <p> tag describes the paragraph of the webpage.

easy and simple language. It can be easily understood and modified.

effective presentation with HTML because it has a lot of formatting tags.

, so it provides a flexible way to design web pages along with the text.

4) It facilitates programmers to add a link on the web pages (by html anchor tag), so it enhances the interest of

because it can be displayed on any platform like Windo

6) It facilitates the programmer to add Graphics, Videos, and Sound to the web pages which makes it more

insensitive language, which means we can use tags either in lower

An HTML document consist of its basic building blocks which are:

An HTML tag surrounds the content and apply meaning to it. It is written between < and >

An attribute in HTML provides extra information about the element, and it is applied within

the start tag. An HTML attribute contains two fields: name & value.

attribute_name= " attr_value"> content </ tag name>

An HTML element is an individual component of an HTML file. In an HTML file, everything

written within tags are termed as HTML elements.

. It can be easily understood and modified.

with HTML because it has a lot of formatting tags.

sign web pages along with the text.

on the web pages (by html anchor tag), so it enhances the interest of

because it can be displayed on any platform like Windows, Linux, and

to the web pages which makes it more

insensitive language, which means we can use tags either in lower-case or upper-case.

An HTML tag surrounds the content and apply meaning to it. It is written between < and >

ormation about the element, and it is applied within

An HTML element is an individual component of an HTML file. In an HTML file, everything

Example:
1. <!DOCTYPE html
2. <html>
3. <head>
4. <title>The basic
5. </head>
6. <body>
7. <h2>The building
8. <p>This is
9. <p style="color:
10. The
11. </body>
12. </html>

Output:

The building blocks

This is a paragraph tag

The style is attribute of paragraph tag

The element contains tag, attribute and content

html>

basic building blocks of HTML</title>

building blocks</h2>
 a paragraph tag</p>

"color: red">The style is attribute of paragraph
The element contains tag, attribute and content

The style is attribute of paragraph tag

The element contains tag, attribute and content

paragraph tag</p>
content

 KAKATIYA GOVERNMENT COLLEGE
 HANUMAKONDA, DIST. HANUMAKONDA
 (Affiliated to Kakatiya University)

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Student Name : M. Rohitha

Group & Year : BSC(MPCs)

Subject : Data Structure Using C++

Faculty Involved : D. Rajkumar

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA

(Affiliated to Kakatiya University)

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Student Seminar

M. Rohitha Date: 0

: BSC(MPCs) – IIYr

Data Structure Using C++ Topic

Rajkumar

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA.

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Date: 06-01-2022

Topic : Stack

Stack is a fundamental data structure which is used to store elements in a linear fashion.
Stack follows LIFO (last in, first
the element which was added last to the stack will be the first element to be removed from the stack.

Stack In C++
A stack is similar to real-life stack or a pile of things that we stack one above the other.

Given below is a pictorial representation of Stack.

As shown above, there is a pile of plates stacked on top of each other. If we want to add another item to it, then we
add it at the top of the stack as shown in the above figure (left
stack is called “Push”.

On the right side, we have shown an opposite operation i.e. we remove an item from the stack. This is also done
from the same end i.e. the top of the stack. This operation is called “

As shown in the above figure, we see that push and pop are carried out fr
follow LIFO order. The position or end from which the items are pushed in or popped out to/from the stack is
called the “Top of the stack”.

Initially, when there are no items in the stack, the top of the stack is s
the top of the stack is incremented by 1 indicating that the item is added. As opposed to this, the top of the stack is
decremented by 1 when an item is popped out of the stack.

Next, we will see some of the basic operations of the stack data structure that we will require while implementing
the stack.

Basic Operations
Following are the basic operations that are supported by the stack.

 push – Adds or pushes an element into the stack.
 pop – Removes or pops an ele
 peek – Gets the top element of the stack but doesn’t remove it.

S T A C K

Stack is a fundamental data structure which is used to store elements in a linear fashion.
 out) order or approach in which the operations are performed. This means that

added last to the stack will be the first element to be removed from the stack.

life stack or a pile of things that we stack one above the other.

Given below is a pictorial representation of Stack.

above, there is a pile of plates stacked on top of each other. If we want to add another item to it, then we
add it at the top of the stack as shown in the above figure (left-hand side). This operation of adding an item to

right side, we have shown an opposite operation i.e. we remove an item from the stack. This is also done
from the same end i.e. the top of the stack. This operation is called “Pop”.

As shown in the above figure, we see that push and pop are carried out from the same end. This makes the stack to
follow LIFO order. The position or end from which the items are pushed in or popped out to/from the stack is

Initially, when there are no items in the stack, the top of the stack is set to -1. When we add an item to the stack,
the top of the stack is incremented by 1 indicating that the item is added. As opposed to this, the top of the stack is
decremented by 1 when an item is popped out of the stack.

ic operations of the stack data structure that we will require while implementing

Following are the basic operations that are supported by the stack.
Adds or pushes an element into the stack.

Removes or pops an element out of the stack.
Gets the top element of the stack but doesn’t remove it.

Stack is a fundamental data structure which is used to store elements in a linear fashion.
order or approach in which the operations are performed. This means that

added last to the stack will be the first element to be removed from the stack.

life stack or a pile of things that we stack one above the other.

above, there is a pile of plates stacked on top of each other. If we want to add another item to it, then we
hand side). This operation of adding an item to

right side, we have shown an opposite operation i.e. we remove an item from the stack. This is also done

om the same end. This makes the stack to
follow LIFO order. The position or end from which the items are pushed in or popped out to/from the stack is

1. When we add an item to the stack,
the top of the stack is incremented by 1 indicating that the item is added. As opposed to this, the top of the stack is

ic operations of the stack data structure that we will require while implementing

 isFull – Tests if the stack is full.
 isEmpty – Tests if the stack is empty.

Illustration

The above illustration shows the sequence of operations that are performed on
empty. For an empty stack, the top of the stack is set to

Next, we push the element 10 into the stack. We see that the top of the stack now points to element 10.

Next, we perform another push operation with element 2
20. This state is the third figure.

Now in the last figure, we perform a pop () operation. As a result of the pop operation, the element pointed at the
top of the stack is removed from the stack. H
Thus the top of the stack now points to 10.

In this way, we can easily make out the LIFO approach used by stack.
Using Arrays

Following is the C++ implementation
#include<iostream>
using namespace std;
 #define MAX 1000 //max size for stack
 class Stack
{
 int top;
 public:
 int myStack[MAX]; //stack array

 Stack() { top = -1; }

Tests if the stack is full.
Tests if the stack is empty.

The above illustration shows the sequence of operations that are performed on the stack. Initially, the stack is
empty. For an empty stack, the top of the stack is set to -1.

Next, we push the element 10 into the stack. We see that the top of the stack now points to element 10.

Next, we perform another push operation with element 20, as a result of which the top of the stack now points to

Now in the last figure, we perform a pop () operation. As a result of the pop operation, the element pointed at the
top of the stack is removed from the stack. Hence in the figure, we see that element 20 is removed from the stack.
Thus the top of the stack now points to 10.

In this way, we can easily make out the LIFO approach used by stack.

implementation of stack using arrays:

#define MAX 1000 //max size for stack

myStack[MAX]; //stack array

the stack. Initially, the stack is

Next, we push the element 10 into the stack. We see that the top of the stack now points to element 10.

0, as a result of which the top of the stack now points to

Now in the last figure, we perform a pop () operation. As a result of the pop operation, the element pointed at the
ence in the figure, we see that element 20 is removed from the stack.

 bool push(int x);
 int pop();
 bool isEmpty();
};

 //pushes element on to the stack
 bool Stack::push(int item)
 {
 if (top >= (MAX-1)) {
 cout << "Stack Overflow!!!";
 return false;
 }
else {
 myStack[++top] = item;
 cout<<item<<endl;
 return true;
 }
}

//removes or pops elements out of the stack
int Stack::pop()
{
 if (top < 0) {
 cout << "Stack Underflow!!";
 return 0;
 }
else {
 int item = myStack[top--];
 return item;
 }
}

//check if stack is empty
bool Stack::isEmpty()
{
 return (top < 0);
}

// main program to demonstrate stack functions
int main()
{
 class Stack stack;

 cout<<"The Stack Push "<<endl;
 stack.push(2);
 stack.push(4);
 stack.push(6);
 cout<<"The Stack Pop : "<<endl;
 while(!stack.isEmpty())
 {
 cout<<stack.pop()<<endl;
 }
 return 0;
}

Output:
The Stack Push
2
4
6
The Stack Pop:
6
4
2

In the output, we can see that the elements are pushed into the stack in one order and are popped out of the stack in
the reverse order. This exhibits the LIFO (Last in, First out) approach for the stack.

cout<<"The Stack Push "<<endl;

cout<<"The Stack Pop : "<<endl;

In the output, we can see that the elements are pushed into the stack in one order and are popped out of the stack in
exhibits the LIFO (Last in, First out) approach for the stack.

In the output, we can see that the elements are pushed into the stack in one order and are popped out of the stack in
exhibits the LIFO (Last in, First out) approach for the stack.

 KAKATIYA GOVERNMENT COLLEGE
 HANUMAKONDA, DIST. HANUMAKONDA

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Student Name : B. Sai Sumalya

Group & Year : BSC(MPCs)

Subject : Programming in JAVA

Faculty Involved : Dr. D. Suresh Babu

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA

 (Affiliated to Kakatiya University)

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

Student Seminar

B. Sai Sumalya

BSC(MPCs) – IIIYr

: Programming in JAVA Topic : Constructor

Faculty Involved : Dr. D. Suresh Babu

KAKATIYA GOVERNMENT COLLEGE
HANUMAKONDA, DIST. HANUMAKONDA.

DEPARTMENT OF COMPUTER SCIENCE & APPLICATIONS

 Date: 07-01-2022

Constructor

S

